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INTRODUCTION

The viscoelastic constitutive equations are generally represented by
integral equations with kernels. These kernels are functions of current time,
an integration limit of the hereditary integral. Therefore, the values of
these kernels change as the time increases and the integral must be evaluated
from time equals zero to the current time for every increment of time. Thus,
as time increases, the required computing time becomes longer and longer.
Furthermore, all physical values fror time equals zero to the current time
must be stored for later evaluations of these integrals. Additionally, for
finite deformation viscoelastic problems, the constitutive equation is an
integral part of the equilibrium equations that result in a set of nonlinear
differential-integral equations. These equations usually can only be solved
numerically and iteratively. Hence, computing time and data storage are the
main concerns in solving finite deformation viscoelastic problems. The main
object of this paper is to develop a method that saves both computing time and

data storage in evaluating these intwegral equations.

In this paper, the constitutive integral equations are written in the
incremental form and a recurrence formula is obtained. This formula has been

previously developed for the kernel represented by the exponential form

only(1). Here a new recurrence form.la has been obtained. The new
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formulation does not restrict the forin of the kernel. The kernel may be of
any differentiable functions. With tne recurrence formula, the value of a
hereditary integral at current time step depends only upon the value at the

previous time step. Thus, no data storage is required and computing time 1is

reduced.

As an example, the constitutive equation, developed by Christensen(z),
for large deformation viscoelastic problems, is used. The recurrence formulas
are obtained explicitly for the relaxation functions that are written in terms

of either the exponential law or the power law.

FORMULATION

The constitutive equation for viscoelastic materials can often be

described by the Volterra integral eguation of the first kind
X
£(x) = ¢0x) - Af  k(x,y) ¢(y)dy M
o

where ¢(x) is usually an input function and f(x) is the responding function of

the material. The kernel k(x,y) sat.sfies the condition
k(x,y) =0 if y>x, (2)

and is further assumed to be continucus and differentiable in this paper.

If X4 denotes the value of x :t the n+1 increments, i.e.,
X = x_ + Ax (3)

then equation (1) can be written as

FUx 40 = olx ) - A I (4)
where
n+1
1,.-f K(x_,1»¥) 8(y) d: (5)

(e}



The value of Ax is a small quantity but it need not be a constant increment.
With the assumption that the kernel i3 continuous and differentiable and with

Taylor's series expansion, one obtaines the following expression for k(xn+1,y)

(Ax)m_1

1 m-1
k(xnﬂ.y) = k(Xn.Y) + Ax k (xn,y)*"”(ﬁT!— k (Xn,Y) + Rm (6)

where, Rm is the remainder in Taylor's sereis

m
R = _(Ax) K™ (E) X < £ < %+AX ' (7

m m!
The k' (x,y) in the above equations denotes the r th order differentiation of -
k(x,y) with respect to x. Substituting equation (6) into equation (5) and

dividing the integral In+1 into two parts with limits from 0 to x

n and from X,
to Xp+1e ONE obtains
m-1
I =71 + Ax I1 +oon 4 M—- 1[11"1 +os0+
n+1 n n (m-1)! n
jrx +AX
_ (8)
< k(xn+Ax,y) ¢o(y) dy
n
where
r xn r
I =.j; k (x ,¥) ¢(y) dy (9)

With the mean-valued theorem, the fo lowing recurrence formula is obtained for
the integral

m-1
_ 1 (Ax) m-1
In+1 - In v A In toeet (m-1)! n

]
k , - -
Fk(x X+ o ax) [¢(xn+,) ¢(xn)] Ax (10)



The integrals I; are evaluated at the previous step. The recurrence formula

for Ir can be obtained similar to I, , 1.e.
n+1 1+ 1
r r P+l e (Ax)m‘til ™1 e
Tnop = Ip v Ly ey e In t
+ kr(x X+ 1 Ax) [¢(x ) —o(x )] AXx (11)
n+1'"n 2 n+1 n
The initial conditions are
1 m-1
IO_Io_ooo_ IO o0 e =0 (12)

Substituting equations (10-12) into equation (4) for In+1' the value for f(x)
at the current n+1 th step is obtained. These values depend upon the values

of the integral and its derivatives at the previous n th step only.

SPECIAL CASES

The application of the recurrence formula for the Volterra integral
equation to viscoelastic constitutive equations is mentioned in this
paragraph. The constitutive equatior, developed by Christensen(z) and

rewritten here for reference, is usec for illustration:

%3 (t) = - p cij + xi'K(t) xj,LIt) [go 8ep * AKL(t)] (13)
and
t é (1)
0 KL
AKL(t) = { g,l(t-'r) GT— di (14)

In equations (13) and (14), oij is tne Cauchy stress, p is the pressure, Xi K
denotes the displacement gradient, GKLiS the Kronecker delta and Eg, are the
components of the Green strain tenso~. There are two material property
functions g0 and gq. The 8o term is the contribution of the kinetic theory of

rubber elasticity; it is related closely to the material constant used in neo-



Hookean constitutive equation in finite elasticity. The g1(t) term is the

relaxation function; it can usually te written in terms of the exponential law

or the powver law.

When the relaxation function is written in terms of the exponential law

g, (t) - et (15)
' then,

A (t ) =-Al (£ ) =A%t ) ~eee (16)

KL ' 'n KL 'n KL ' 'n )

Equation (10) reduces to

2 a
i (at)  _ (at) ..,
M by = (1700 + B8 - L8 Ty e
- TAt2 [Exe(bnat) = Egr (8] an

With the initial condition that AKL(U)=O, the constitutive equation (13) can

be written in the recurrence form

) I g 6

g..(t ) = -ps.. *+ x (t ) tn+1 l o SxL

ij n+1i ij i,K" n+1

SRR

_at
L P (S B [ ) } (18)

The Cauchy stresses in (17) at time n+ depend only on the values evaluated

at t, and the deformation gradients at t and t ...

When the relaxation function is written in terms of the power law

g, (t) = e (19)



the r th derivative of g1(t) with respect to t is

€(t) = @ (a-1) e+ (are1) glor (20)

Equation (10) reduces to

1
A, Cnaq?) = B (Bp) + 88 A () + oee

(21)

)™ me1 AT '
Yot A () et (‘E) [EKL(tn+1)—EKL(tn)]

The recurrence formulas for the derivatives in equation (21) are

AT () = AT (t) + at AT (6 ) seews £2EDTTT ATV (L ) 4 eee
KL ' "n+1’ =~ "KL' "n KL *"n’ (m-r-1)! KL n
(22)
_ _ At (o-r) _ ‘
+ ale~1)ese(a-r+1) (53) [EKL(tn+1) EKL(tn)]
and the initial conditions are
A, (0) = Al (0) =eas= A% (0) —eee =0 (23)
KL KL KL

With equations (21-23), the current values of the integral in equation (13)

depend on the previous time step only. The recurrence formula for

viscoelastic constitutive equations, with relaxation funetions represented by
the power law, is again obtained.



DISCUSSION

There are many representations for the constitutive equation for
viscoelastic materials. Only the one developed by Christensen is presented in
this paper as a special case. However, the general formulation should be
applicable to all convolution integrals. Furthermore, the forms of the
relaxation or creep functions are not limited to the exponential or power laws
as presented in this paper. The general recurrence formula can be used for
any relaxation and creep functions that are continuous and differentiable.

The viscoelastic problems, combined with the recurrence formula, can be solved

just like the elastic problems for e:ich time step.
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